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Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as
a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced
DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling
pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which
cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin
inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein
kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development
of more effective therapeutic strategies for the treatment of cancer.

1. Introduction

Cisplatin was discovered fortuitously by Dr. Rosenberg in
1965 while he was examining the effect of electromagnetic
field on bacterial cell growth [1, 2]. Since the active principle
that inhibited bacterial cell division was identified to be
cisplatin, he anticipated that it would also inhibit the
proliferation of rapidly dividing cancer cells. Cisplatin was
indeed demonstrated to possess antitumor activity in a
mouse model [3] and was first used in the clinical trial
almost 30 years ago. Since its approval by the Food and Drug
administration in 1978, cisplatin continues to be one of the
most effective anticancer drugs used in the treatment of solid
tumors.

Cisplatin has been used as a first-line therapy for
several cancers, including testicular, ovarian, cervical, head,
and neck and small-cell lung cancers either alone or in
combination with other anticancer agents. It is also used
as an adjuvant therapy following surgery or radiation. In
addition to cisplatin, its analogs, such as carboplatin and
oxaliplatin, are also currently being used in the clinic.
However, patients who initially respond to cisplatin therapy
often develop resistance to the drug during the course of the
treatment.

The success of cisplatin therapy is compromised due to
dose-limiting toxicity, especially nephrotoxicity as well as
resistance by tumor cells to cisplatin. Cellular resistance to
cisplatin could be either intrinsic or acquired. The clinically
acquired resistance can be caused by decreased drug accu-
mulation which includes reduced uptake or increased efflux
of cisplatin, increased drug detoxification by cellular thiols,
increased DNA repair or tolerance of cisplatin-damaged
DNA and the ability of the cancer cells to evade cisplatin-
induced cell death. Numerous studies have focused on the
drug-target interactions, cellular pharmacology, and phar-
macokinetics of cisplatin. Another active area of research has
been to develop analogs of cisplatin to minimize toxicity and
circumvent cisplatin resistance.

The antitumor activity of cisplatin is believed to be
due to its interaction with chromosomal DNA [4]. Only
a small fraction of cisplatin, however, actually interacts
with DNA and the inhibition of DNA replication cannot
solely account for its biological activity [5]. In addition,
the efficacy of chemotherapeutic drugs depends not only on
their ability to induce DNA damage but also on the cell’s
ability to detect and respond to DNA damage [6]. Following
DNA damage, cells may either repair the damage and start
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progressing through the cell cycle or if they cannot repair the
damage, cells proceed to die [5]. Cisplatin, like many other
chemotherapeutic drugs, can induce apoptosis. Thus, the
signaling pathways that regulate apoptosis have significant
impact on deciding cellular responsiveness to cisplatin. There
are many excellent reviews on cisplatin and its analogues [7–
15]. In this paper, we primarily focused on recent studies
on cellular responses to cisplatin-induced DNA damage
although we briefly discussed steps leading to cisplatin-
induced DNA damage. This comprehensive paper should
not only benefit researchers in the field of cisplatin but also
benefit those interested in mechanisms of chemoresistance
and targeted therapy.

2. Biotransformation of Cisplatin

Cisplatin or cis-diamminedichloroplatinum(II) is a neutral,
square-planar, coordination complex of divalent Pt [8]. The
cis configuration is required for its antitumor activity [16].
It has two labile chloride groups and two relatively inert
amine ligands. Cisplatin undergoes hydrolysis in water. The
chloride concentration is an important factor in determining
the hydrolysis or aquation of cisplatin. The high chloride
concentration (∼103 mM) of blood plasma prevents the
hydrolysis of cisplatin. Upon entering the cell, the chloride
concentration drops down to 4 mM which facilitates the
aquation process [17]. The aquated form of cisplatin is a
potent electrophile and reacts with a variety of nucleophiles,
including nucleic acids and sulfhydryl groups of proteins.

3. Accumulation of Cisplatin Inside Cells

Cisplatin and its analogues were initially thought to enter
cells by passive diffusion because cisplatin uptake was linear,
nonsaturable and could not be competed with platinum
analogs [4–6, 17]. Although decreased accumulation of
cisplatin is often associated with acquired resistance to
cisplatin, few or no changes were observed in the plasma
membrane function in the cisplatin-resistant cell lines as
compared to the parental cells [18–20]. In 1981, it was
first proposed that cisplatin could be transported actively
via the carrier-mediated transport [21]. Several transporters,
including the Na+, K+-ATPase [22] and members of solute
carrier (SLC) transporters [11] have been implicated in
facilitating the entry of cisplatin into the cells. The plasma
membrane copper transporter-1 (CTR1), a member of the
SLC family, gained particular attention since a defect in
Ctr1 gene decreased cisplatin accumulation in yeast [23, 24].
In addition, cisplatin and carboplatin accumulation was
attenuated in mouse embryonic fibroblasts from ctr1−/−

animals compared to wild-type animals [18]. Interestingly,
both copper and cisplatin were shown to cause rapid
downregulation of CTR1 in ovarian cancer cells by the
proteasome-mediated pathway [19]. While CTR1 appears to
transport cisplatin and its analogs, there is little decrease
in CTR1 when cells acquire resistance to cisplatin. A recent
study demonstrated that copper transporter-2 or CTR2
limits accumulation of cisplatin and the level of CTR2

correlates with the sensitivity of ovarian carcinoma cells
to cisplatin [25]. The organic cationic transporters SLC22
family of proteins have also been shown to participate in
cisplatin influx [11]. Thus, cisplatin can enter cells by passive
or facilitated diffusion and by active transport. Depending on
the cellular context, multiple transporters may be involved in
cisplatin uptake. Therefore, it is difficult to correlate cisplatin
sensitivity/resistance with a particular transporter.

Many cell lines with acquired resistance to cisplatin often
exhibit reduced drug accumulation. Unlike multidrug resis-
tance (MDR), drug efflux does not appear to be the major
cause of cisplatin resistance. Kawai et al. first reported that
a 200-kDa plasma membrane glycoprotein is overexpressed
in murine thymic lymphoma cells selected for resistance to
cisplatin, which correlated with reduced accumulation of
cisplatin in the cells [26]. The increased expression of this
protein correlated with the degree of cisplatin resistance [26].
There was, however, no follow-up study to establish the
importance of this protein in conferring cisplatin resistance.
The ATP-dependent glutathione-conjugated efflux pump
and copper transporters ATP7A and ATP7B have been
implicated in cisplatin export [20]. It is generally believed
that reduced cisplatin accumulation in cisplatin resistant
cells is due to decrease in uptake of cisplatin rather than an
increase in drug efflux [7, 27].

4. Formation and Repair of
Cisplatin DNA Adduct

DNA is thought to be the primary biological target of
cisplatin [17, 28, 29]. The platinum atom of cisplatin forms
covalent bonds with the N7 position of purine bases to form
1,2- or 1,3-intrastrand crosslinks and a lower percentage
of interstrand crosslinks. Cisplatin resembles bifunctional
alkylating agents. The intrastrand crosslink between two
adjacent G residues is believed to be the critical lesion
responsible for cisplatin cytotoxicity. Formation of cisplatin-
DNA adducts interferes with DNA replication and tran-
scription. The interstrand and intrastrand crosslinks disrupt
the structure of the DNA. This alteration in the structure
is recognized by the cellular proteins to repair cisplatin-
induced DNA damage. Increased repair of cisplatin-induced
DNA damage has been associated with cisplatin resistance.

4.1. Cisplatin and Nucleotide Excision Repair Pathway. Since
the intrastrand cross-link is the major lesion caused by
cisplatin-induced DNA damage, it is primarily repaired via
the nucleotide excision repair (NER) system. Xeroderma
Pigmentosum (XP) is a disorder caused by deficiency of
genes involved in NER. Cells derived from XP patients
are exquisitely sensitive to cisplatin [30]. In addition, the
favorable response of testicular cancer to cisplatin was
associated with low levels of XP complementation group
A (XPA) and excision repair cross-complementation group
I (ERCCI), which participate in NER [31, 32]. A number
of studies correlated the overexpression of ERCC1 or XPA
proteins with cisplatin resistance [31–34]. The existence of
ERCC1 exon VIII alternative splicing was observed in ovarian
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cancer cells [35]. Although this splicing did not affect the
level of ERCC1, it decreased its excision repair function.
In addition, epigenetic changes, such as hypermethylation
of ERCC1, which inversely correlated with ERCC1 mRNA
levels, have been suggested as a mechanism for enhanced
cisplatin sensitivity [36]. A recent study demonstrated that
XPA binding domain of ERCC1 was required for the repair
of cisplatin-damaged DNA [37]. A double knockdown of
XPF/ERCC1 complex was shown to be very effective in
enhancing cisplatin sensitivity in non-small cell lung cancer
cells [38]. An antisense DNA against XPA sensitized lung
adenocarcinoma cells to cisplatin [34]. Recently, it has been
reported that treatment of rat spiral ganglion neurons with
cisplatin induced the mRNA levels of XPA and XPC along
with nuclear translocation of these enzymes, thus decreasing
the rate limiting step in the NER pathway [39]. This can
provide a plausible mechanism by which cisplatin induces
NER. Kang et al. made an interesting observation that XPA
was regulated in a circadian fashion in the mouse liver, but
not in the testis [40]. Removal of cisplatin-DNA adducts
also followed a circadian pattern in the extracts derived from
the liver. The authors proposed that chronochemotherapy
could be more effective in the treatment of cancers in which
XPA removes cisplatin-DNA adducts in a circadian fashion.
Thus, the cisplatin-induced DNA repair employing the NER
process is multilayered including epigenetic, transcriptional,
and posttranslational regulation.

NER is also linked to the cellular signaling pathways.
It has been reported that the NER process may prevent
cisplatin-induced apoptosis by activating the ataxia telang-
iectasia mutated (ATM) pathway which is recruited to the
damaged DNA through XPC [41]. Lack of functional p53
has been associated with persistence of cisplatin-induced
intrastrand cross-links, suggesting the importance of p53 in
regulating NER of cisplatin-damaged DNA [42]. Functional
NER was also required for cisplatin-induced transcription of
Bcl-xL via nuclear factor-kappa B (NF-κB) [43].

In addition to NER, cisplatin can also induce tran-
scription-coupled repair (TCR). The intrastrand crosslink
stalls RNA polymerase II to trigger TCR [44]. It has
been reported that p53 protects against cisplatin-induced
apoptosis in a TCR-dependent manner [30]. In addition, the
homology-directed DNA repair (HR) that allows error-free
repair of the double-strand breaks caused by the excision of
cisplatin-DNA adducts has been implicated in the repair of
cisplatin-induced DNA damage [45]. It has been reported
that mouse mammary tumors containing irreparable null
alleles of Brca1 gene, which is involved in DNA double strand
break repair, do not become resistant to cisplatin. Bypass
of cisplatin-DNA adduct has also been associated with
cisplatin resistance. DNA polymerase-eta could replicate
across intrastrand cross-link between cisplatin and two
adjacent G residues [46].

4.2. Cisplatin and Mismatch Repair Pathway. Mismatch
repair (MMR) system recognizes cisplatin-induced DNA
damage, but instead of increasing cell viability, MMR system
was shown to be important for cisplatin-mediated cytotoxi-
city [47]. DNA mismatch repair protein, MutSα recognized

DNA lesions formed by cisplatin [48–50], and mutations in
MSH1 or MLH1 genes of the MMR system were observed
in cisplatin-resistant cells [51–53]. Recently, the proapop-
totic function of cisplatin was shown to be mediated in
an MSH2/MSH6-dependent manner [54]. MLH1-proficient
cells were more sensitive to cisplatin compared to MLH1-
deficient cells. Cell death by cisplatin was associated with
significant proteolysis of MLH1, caused by destabilization of
X-linked inhibitor of apoptosis protein (XIAP), resulting in
caspase activation [55]. The repair function of MMR pro-
teins has been reported to be uncoupled from their function
in mediating cisplatin-induced cell death [56–58]. Since the
primary mechanism of cisplatin involves DNA damage and
p53 is also involved in DNA damage signaling, there are many
studies that correlate cisplatin and DNA damage and repair
with p53 activity [59–62]. It has been reported that cisplatin
enhances the interaction between mismatch repair protein
MLH1/postmeiotic segregation increased 2 (PMS2) and
p73 triggering apoptosis in mismatch repair-proficient cells
[60].

5. Interaction of Cisplatin with Cellular Thiols

Although the major target of cisplatin is the nuclear DNA,
it exhibits a high affinity towards sulfur donors such as
cysteines and methionines forming stable Pt-S bonds. This
competes with the affinity towards the nitrogen atom in
the DNA thus contributing towards resistance against the
cytotoxic action of cisplatin [63]. The abundant intracellular
thiols involved in the drug resistance are glutathione and
metallothionein.

5.1. Interaction of Cisplatin with Glutathione. When cancer
cells are exposed to cisplatin, the platinum atom in cisplatin
is chelated by glutathione (GSH) and the glutathione-Pt
complex is effluxed from the cell in an ATP-dependent
manner by the glutathione transporter family, termed the
GS-X pumps [64]. It was initially noted that cells that
are resistant to cisplatin have elevated levels of glutathione
[65]. However, recent studies with cisplatin-resistant cancer
cell lines seem to suggest otherwise [66, 67]. Based on
NMR studies, Kasherman et al. reported that the higher
levels of GSH do not correlate with decreased sensitivity
to cisplatin [68]. In agreement with this study, Chen et
al. suggested that increased levels of GSH might sensitize
cells to cisplatin by upregulation of the copper transporter
hCtr1 [69]. Therefore, whether overexpression of glutathione
contributes to or combats cisplatin resistance is still under
debate.

Apart from GSH, the glutathione S-transferase P1-1
(GSTP1-1) enzyme has also been associated with resistance
to cisplatin-based chemotherapy [70, 71]. Pasello et al.
demonstrated that increased levels of GSTP1 were asso-
ciated with cisplatin resistance in osteosarcoma cell lines
and a higher relapse rate and poor prognosis in high-
grade osteosarcoma patients [72]. In contrast, a recent
study by Peklak-Scott et al. suggested that a high level
of cisplatin resistance may not be due to conjugation of
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cisplatin to glutathione by GSTP1 [73]. Other enzymes in
the glutathione transferase family, such as the GSTμ or
the GSTO1-1, have also been implicated in contributing
towards cisplatin resistance [74, 75]. Thus, although a
great deal of work has been focused on the correlation of
glutathione and its conjugating enzymes towards cisplatin
resistance, further studies are needed to explore this in
detail.

5.2. Interaction of Cisplatin with Metallothionein. Metalloth-
ioneins (MT) are cysteine-rich proteins, which consist of 61-
68 amino acids of which 20 are cysteins. The four isoforms of
MTs (MT1-MT4) are ubiquitously expressed in humans and
are inducible by a variety of drugs, including cisplatin [76].
They are involved in zinc and copper homeostasis, heavy
metal detoxification, and protection from apoptosis. Initial
reports observed an increased expression of metallothionein
correlating with cisplatin resistance in ovarian carcinoma
cell lines [77]. We have also seen that a wide variety of
human cancer cell lines with acquired resistance to cisplatin
overexpressed metallothionein and ectopic expression of
metallothionein conferred cisplatin resistance [78]. Recent
reports also suggest that the increased expression of metal-
lothionein correlates with cellular resistance against cisplatin
[79–81].

The ubiquitously occurring metallothionein isoforms,
MT-1 and MT-2, have been shown to react faster with
cisplatin [82], compared to glutathione [83, 84]. The basal
levels of MT-1 and MT-2 are often significantly increased in
cancer cells [78, 85], resulting in even stronger scavenging
of divalent platinum, and contributing to acquired resistance
against cisplatin [78, 86, 87]. MT-3 isoform was initially
thought to be unresponsive to the platinum drugs [81].
Recent reports, however, suggest that MT-3 is overexpressed
in hypoxic conditions, and the reaction between MT-3
and Pt(II) is kinetically preferred [81]. The authors further
proposed that the Zn(II) released from this reaction can
result in the upregulation of the MT-1 and MT-2 isoforms.
Thus, metallothionein isoforms play an important role in
contributing towards cisplatin resistance.

6. Cisplatin and DNA Damage Signaling

Various stress signals generate DNA lesions that may lead
to mutations and genomic instability. Following DNA dam-
age, cell cycle checkpoints are activated to delay cell-cycle
progression to provide time for DNA repair or eliminate
genetically unstable cells by inducing cell death. It is
now recognized that inhibition of DNA replication is not
sufficient to explain cisplatin cytotoxicity. How cells respond
to cisplatin-induced DNA damage plays a major role in the
ultimate decision whether a cell should live or die following
cisplatin treatment.

6.1. p53 and Cisplatin-Induced DNA Damage Response. The
tumor suppressor protein p53 is considered as the “guardian
of genome”. It plays a critical role in eliciting cellular
responses to DNA damage. p53 is a short-lived protein

which is primarily degraded via the ubiquitin proteasome-
mediated pathway [30, 88]. The E3 ubiquitin ligase Mdm2 is
a transcriptional target of p53 and regulates p53 expression
via a negative feedback loop [30]. DNA damage results
in the activation of ATM and/or ATM- and Rad3-related
(ATR), resulting in phosphorylation and stabilization of
p53 [88]. p53 can transactivate genes involved in cell cycle
progression (e.g., p21), DNA repair (e.g., growth arrest and
DNA damage-inducible 45, GADD45), and apoptosis (e.g.,
Bax) [89].

Fujiwara et al. first demonstrated that adenoviral-
mediated delivery of p53 into small-cell lung cancer cells
induced massive apoptosis both in monolayer cultures and
in tumor xenografts upon treatment with cisplatin [90].
Introduction of wild-type p53 by adenovirus vector also
sensitized ovarian cancer cells to cisplatin [91–93]. Several
proteins, including cyclin-dependent kinase inhibitor p21,
ATR, and checkpoint kinase (CHK2) have been implicated
in p53-mediated apoptosis [94–97]. In addition, tumor cells
lacking functional p53 were more resistant to cisplatin than
cells that contained functional p53 and the resistant cell lines
were sensitized to cisplatin upon reconstitution with wild-
type p53 [98, 99]. p53 itself has been shown to bind cisplatin-
modified DNA [100]. In addition, cisplatin was shown to
induce nitrosylation of p53 preventing its mitochondrial
translocation [101].

p53 can regulate cisplatin-induced cell death by several
mechanisms. Degradation of FLIP (FLICE-like inhibitory
protein) has been reported to be necessary for p53-induced
apoptosis in response to cisplatin [102, 103]. p53 also pro-
motes cisplatin-induced apoptosis by directly binding and
counteracting the antiapoptotic function of Bcl-xL [104].
Although the phosphatase and tensin homolog (PTEN) is
believed to inhibit phosphoinositide 3-kinase (PI3K)/Akt,
overexpression of PTEN was shown to involve p53-mediated
apoptotic cascade in cisplatin-resistant ovarian cancer cells
independent of PI3K/Akt pathway [105]. The nutrient-
sensor AMP-kinase (AMPK) was shown to be activated by
cisplatin in AGS and HCT-116 cancer cells and inhibition
of AMPK enhanced cisplatin-induced apoptosis by causing
hyperinduction of p53 [106].

One of the major side effects of cisplatin therapy is
nephrotoxicity and the involvement of p53 in cisplatin-
induced nephrotoxicity has been investigated. p53 induced
proapoptotic Bcl-2 family member PUMAα in renal tubular
cells upon treatment with cisplatin, and dominant-negative
p53 suppressed the expression of PUMAα. This study was
extended in C57 mice. Acute renal failure upon cisplatin
treatment was abrogated in p53-deficient C57 mice and this
was associated with little or no induction of PUMAα [107].
CHK2 has also been implicated in apoptosis of renal cells
and tissues as a result of cisplatin-induced p53 activation
[94]. A study by Yang et al. revealed that caspase-6 and -7
are transcriptional targets of p53 [108]. Thus, induction of
p53 by cisplatin resulted in the activation of these caspases
contributing to nephrotoxicity [108]. Inhibition of p53
by pharmacological inhibitor or knockout of p53 in mice
suppressed caspase-6 and -7 transactivation and protected
against nephrotoxicity. Recently, microRNAs have also been
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shown to play a major role in cisplatin nephrotoxicity. miR-
34a is induced by cisplatin via p53 and plays a cytoprotective
role in the survival of proximal tubular cells [109].

Although a plethora of literature exists on the role of
p53 in contributing towards cisplatin cytotoxicity, p53 has
also been associated with cisplatin resistance. MCF-7 breast
cancer cells containing wild-type p53 are highly resistant
to cisplatin but disruption of p53 by the introduction of
human papilloma virus (HPV) in MCF-7 cells sensitized
these cells to cisplatin [110]. Ovarian cancer cells selected for
cisplatin resistance exhibited higher levels of p53 compared
to cisplatin-sensitive counterpart [111]. Although p53 level
is low in HeLa cells due to degradation of p53 by HPV, it was
elevated in cisplatin-resistant HeLa cells [112]. Studies have
also shown that mutations in p53 contributed to cisplatin
resistance in different cancer models [113–116].

Although p53 plays an important role in cisplatin-
induced DNA damage response, p53-negative cells also
respond to cisplatin-induced DNA damage, suggesting alter-
nate pathways of sensing cisplatin-induced DNA damage.

6.2. c-Abl and Cisplatin-Induced DNA Damage Response.
The tyrosine kinase c-Abl plays an important role in stress
response to DNA damaging agents. It belongs to the non-
receptor tyrosine kinases and contains nuclear localization
motifs and nuclear export signals. Thus, it can shuttle
between the nucleus and cytoplasm. Nuclear import of c-
Abl was shown to be necessary for DNA damage-induced
apoptosis [117]. It is activated in response to cisplatin
causing activation of c-Jun-N-terminal kinase (JNK)/stress-
activated protein kinase (SAPK) [118]. c-Abl-deficient cells
fail to activate JNK. Nuclear c-Abl can associate with and
phosphorylate MEK kinase 1 (MEKK1) in response to DNA
damage resulting in the activation of JNK/SAPK [119].
Nehmé et al. [120] demonstrated that activation of c-Abl
and JNK is contingent upon the recognition of cisplatin-
induced DNA damage by the MMR system since c-Abl
response is absent in MMR-deficient cells. They further
demonstrated that the activation by these pathways is specific
to cisplatin and not to the cisplatin analogue oxaliplatin,
thus highlighting the importance of the MMR system to
specifically recognize cisplatin-DNA adducts [120, 121].

Interestingly, MMR/c-Abl cooperates with p73, a mem-
ber of the p53 family, to trigger apoptosis [122]. Cisplatin
caused induction of p73 in several cancer cell lines and in
mouse embryonic fibroblasts (MEF), which were proficient
in mismatch DNA-repair pathway but not in MEF deficient
in c-Abl or MMR [122]. Activation of c-Abl in response
to cisplatin led to phosphorylation and stabilization of
p73 [123, 124]. Phosphorylation of p73 can also increase
its proapoptotic function by dissociating itself from p63,
another member of the p53 family. p63 can bind to and
counteract the proapoptotic function of p73 [125]. In
addition, c-Jun was shown to enhance p73 stability and
transactivation activity by preventing its degradation via the
proteasomal pathway [126]. Binding of the transcription
coactivator Yap1 also prevents proteasomal degradation of
p73 and results in the recruitment of p300 to trigger
transcription of proapoptotic genes. c-Abl can directly

phosphorylate Yap1, increasing its stability and affinity for
p73 [127]. Phosphorylation of Yap1 can dictate whether p73
will transactivate proapoptotic or growth arrest genes [127].
A recent study suggests that c-Abl can regulate the function
of p63. Phosphorylation of p63 at Tyr residue by c-Abl
stabilizes it causing an increase in its proapoptotic function
[128].

Cisplatin can trigger cleavage of c-Abl which is a substrate
for caspase and proteolytic cleavage of c-Abl was shown to be
important for cisplatin-induced apoptosis [129]. Activation
of p38 MAPK is critical for regulating cisplatin activity.
Galan-Moya et al. [130] recently reported that c-Abl activates
p38 MAPK independent of its tyrosine-kinase activity but
by stabilizing MKK6, the upstream kinase of p38 MAPK.
This study provides an explanation why the c-Abl inhibitor
imatinib fails to inhibit p38 MAPK [130]. Thus, c-Abl is
an important mediator of cisplatin-induced DNA damage
response and acts in cooperation with the siblings of p53 and
MAPK pathways to trigger cisplatin-induced apoptosis.

7. Regulation of Cisplatin-Induced Cell Death
by Protein Kinases

Cisplatin primarily induces cell death by apoptosis and a
defect in apoptotic signaling could also confer cisplatin
resistance. There are two major pathways of cell death [131,
132]. The extrinsic pathway is initiated when ligands bind
to the tumor necrosis factor-α (TNFα) receptor superfamily
followed by oligomerization and recruitment of procaspase-
8 via adaptor molecules to form the death-inducing signaling
complex (DISC). The intrinsic pathway is initiated by
cellular stress, such as DNA damage, resulting in release
of cytochrome-c from the mitochondria causing activation
of procaspase-9 through the interaction with apoptosis
promoting activating factor-1 (APAF-1) and formation of an
active apoptosome complex. Bcl-2 family proteins regulate
DNA damage-induced apoptosis by regulating the release of
mitochondrial cytochrome c in response to DNA damage.
Cisplatin-induced genotoxic stress activates multiple signal
transduction pathways, which can contribute to apoptosis or
chemoresistance.

7.1. Cisplatin and Protein Kinase C. Protein kinase C (PKC) is
a family of closely related phospholipid-dependent enzymes
that play critical roles in signal transduction and cell regu-
lation [133–136]. Based on the structure and biochemical
properties they are grouped as conventional (α, βI, βII,
and γ), novel (δ, ε,η, and θ) and atypical (ζ and ι) PKCs.
Tumor-promoting phorbol esters are potent activators of
PKCs but persistent treatment with phorbol esters can induce
downregulation or degradation of phorbol ester-sensitive
conventional and novel PKCs.

We inadvertently found that the PKC signal transduction
pathway can regulate cisplatin sensitivity. In the meantime,
Hofmann et al. reported that inhibition of PKC by quercetin
or downregulation of PKC by the phorbol ester, 12-O-
tetradecanoylphorbol-13-acetate (TPA) could enhance the
antiproliferative activity of cisplatin [137]. In contrast,
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Isonishi et al. [138] and we [139] simultaneously reported
that activation of PKC by phorbol esters could enhance
sensitivity of human ovarian cancer 2008 and human cervical
cancer HeLa cells to cisplatin. There were contrasting reports
whether activation or downregulation of PKC was necessary
for cisplatin sensitization [138, 140]. Although TPA is a
useful tool as a pharmacological agent to study PKC function,
it is a tumor promoter and therefore cannot be used in
the clinic. We first showed that bryostatin 1, a partial PKC
agonist which lacks tumor promoting activity, also sensitized
HeLa cells to cisplatin [141]. Based on the preclinical studies,
Phase II trial using combination of bryostatin 1 and cisplatin
was initiated in advanced recurrent cervical carcinoma but
was not very effective [142]. Combination of bryostatin 1
and cisplatin had minimal toxicity in patients with refractory
nonhematological malignancies although only four patients
achieved an objective response [143]. This may be because
bryostatin 1 is a partial agonist and its regulation is complex.
One of the caveats with these earlier studies to define
the role of PKC in regulating cisplatin sensitivity was that
PKC activation and downregulation was monitored based
on PKC activity assay which does not discriminate among
PKC isozymes. We now know that PKC isozymes may have
distinct and even opposite effects on cisplatin-induced cell
death [144]. Another shortcoming with these studies was the
use of pharmacological agents that lack absolute specificity
to PKC.

An increase in novel PKCδ or -ε and a decrease in
conventional PKCs have been associated with acquired
resistance to cisplatin [145]. However, inhibition of PKCα
by Gö 6976 and depletion of PKCα by siRNA enhanced
sensitivity of both parental and cisplatin-resistant HeLa cells
to cisplatin [146]. Antisense oligonucleotides against PKCα
enhanced the antitumor activity of cisplatin against human
breast cancer MCF-7, prostate cancer PC3, and human
small cell carcinoma H69 cells transplanted in nude mice
[147]. Additionally, antisense oligonucleotide against PKCα
in combination with cisplatin was effective in patients with
non-small cell lung cancer [148]. Furthermore, although
PKCα was downregulated in cisplatin-resistant A2780 cells,
introduction of PKCα in these cells attenuated cisplatin
sensitivity [149]. A recent study demonstrated that inhibition
of PKCβ by enzastaurin enhanced cisplatin sensitivity via
dephosphorylation of p90 ribosomal S6 kinase and Bad
[150]. These results suggest that conventional PKCα and
-β function as antiapoptotic proteins. It is not clear why a
decrease rather than an increase in cPKCs was associated with
cisplatin resistance.

The observation that PKCδ is a substrate for caspase-
3 [151] established the importance of this PKC isozyme in
apoptotic signaling. It has been reported that treatment of
cisplatin-resistant human squamous cell carcinoma SCC-
25 (SCC25/CP) cells to cisplatin failed to induce caspase-3
activation and cleavage of PKCδ due to an increase in anti-
apoptotic Bcl-xL [152]. Interestingly, the effect of bryostatin
1 on caspase activation and PKCδ downregulation followed
similar biphasic concentration response in both parental and
cisplatin-resistant HeLa cells [146, 153]. We have shown
that PKCδ not only acts downstream of caspase-3 but it

can also regulate cisplatin-induced activation of caspase-3
[154]. These studies were based on the effect of rottlerin,
a pharmacological inhibitor of PKCδ on cisplatin-induced
apoptosis [155]. Although rottlerin caused downregulation
of caspase-2 and inhibition of cisplatin-induced apoptosis,
the effect of rottlerin on caspase-2 downregulation was not
due to inhibition of PKCδ [156]. The effect of PKCδ on
cisplatin-induced apoptosis depends on the cellular context.
In gastric cancer MKN28 cells, PKCδ was shown to enhance
cisplatin-induced caspase activation and cell death via p53
[157]. Overexpression of PKCδ or caspase cleavage-resistant
mutant of PKCδ had little effect on cisplatin-induced cell
death in human small-cell lung cancer H69 cells which have
mutated p53 [158]. On the other hand, knockdown of PKCδ
enhanced cisplatin-induced cell death in thyroid cancer by
decreasing fos expression [159].

We have shown that overexpression of PKCε contributes
to cisplatin resistance by inhibiting cisplatin-induced apop-
tosis [160]. Integrative genomic approach has identified
PKCι as a potential oncogene for ovarian carcinoma [161].
It has also been associated with chemoresistance of glioblas-
toma multiforme, an aggressive form of brain cancer [162].
The mechanism of PKCι-mediated chemoresistance involved
inhibition of p38 MAPK [162]. A recent study suggests
that atypical PKCζ can counteract the ability of cisplatin
to decrease matrix metalloproteinase-2 secretion [163].
Thus, the effects of PKC on cellular sensitivity/resistance to
cisplatin depend on the pattern of the PKC isozymes as well
as on the cellular context.

7.2. Cisplatin and MAPK. Mitogen-activated protein kinases
(MAPK) are a family of structurally-related serine/threonine
protein kinases that coordinate various extracellular signals
to regulate cell growth and survival [164–166]. There are
three major subfamilies of MAPK: extracellular signal-
regulated kinase (ERK)-1 and -2, stress-activated protein
kinase (SAPK)/c-Jun N-terminal kinase (JNK) and p38
MAPK. All three MAPKs have been implicated in regulating
cisplatin-induced cell death.

ERK is activated in response to growth factors and
mitogens. Cisplatin has been shown to cause activation
of ERK in several cell types although there are contro-
versies whether activation of ERK prevents or contributes
to cisplatin-induced cell death [167–173]. ERK has been
shown to function as a prosurvival protein in ovarian
cancer [102, 174], melanoma [175], cervical cancer SiHA
[176], human myeloid leukemic [177], and gastric cancer
[178] cells. High basal nuclear phospho-ERK2 was asso-
ciated with cisplatin resistance of ovarian cancer OVCAR-
3 cells [179]. Furthermore, nanoparticle-mediated delivery
of MEK inhibitor PD98059 enhanced antitumor activity
of cisplatin in melanoma-bearing mice [180]. Cisplatin-
induced ERK activation precedes p53-mediated DNA dam-
age response since ERK directly phosphorylates p53 causing
upregulation of p21, GADD45, and Mdm2 [181]. Thus,
activation of ERK may cause cell cycle arrest allowing
time for the repair of cisplatin-induced DNA damage via
p53. ERK also induced phosphorylation of BAD at Ser112
site in response to cisplatin in ovarian cancer cells, and
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inhibition of ERK by PD98059 or mutation of Ser112
to Ala sensitized cells to cisplatin [174]. In SiHA cells,
phosphorylation and activation of NF-κB were associated
with the prosurvival function of ERK [176]. Glutathione-
mediated cisplatin transport and GSTP1 expression also
contributed to the antiapoptotic function of ERK in human
myeloid leukemic cells [177] and gastric cancer cells [178],
respectively. Recently, it has been reported that ovarian
cancer cells grown in three-dimensional cultures acquired
resistance to anoikis and apoptosis when exposed to clinically
relevant concentrations of cisplatin [167]. This resistance
was mediated by the ERK1/2 signaling and the PI3K/Akt
pathway. ERK signaling was also shown to be activated
when stimulated by inducers such as the cigarette smoke-
carcinogen NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanone], causing cisplatin resistance [182].

ERK activation was also shown to be required for
cisplatin-induced apoptosis in cervical cancer HeLa cells
[168, 169, 173], osteosarcoma and neuroblastoma cells [183],
testicular germ cell tumors [184], glioma cells [185], renal
epithelial cells [186], nasopharyngeal carcinoma cells [187],
and human small cell lung cancer cells [188]. Decrease
in ERK level/phosphorylation was associated with cisplatin
resistance in HeLa cells [168, 173]. Cisplatin-induced activa-
tion of p53 was associated with proapoptotic effect of ERK1/2
in B104 cells [189], whereas cisplatin-induced acute renal
failure (ARF) in mice was attributed to increase in TNFα gene
expression by ERK and activation of caspase-3 [190]. We
have found that knockdown of PKCδ attenuates cisplatin-
induced ERK activation and apoptosis [173], suggesting that
PKCδ acts upstream of ERK1/2 to trigger cisplatin-induced
apoptosis.

7.3. Cisplatin and JNK. c-Jun N-terminal kinase or stress-
activated protein kinase is activated by various stress stimuli,
including DNA damage. The involvement of the JNK
pathway in cisplatin-induced apoptosis began when it was
seen that cells defective in JNK pathway were resistant to
cisplatin [191]. Although both cis and transplatin activated
the JNK pathway, the kinetics of JNK activation was distinct
[192]. Slow and persistent activation of JNK by cisplatin
as opposed to rapid and transient activation of JNK by
transplatin may explain the ability of cisplatin to induce cell
death. The observation that p73, a proapoptotic member
of the p53 family, forms a complex with JNK leading to
cisplatin-induced apoptosis, provides a mechanistic basis
of how JNK activation leads to cisplatin-induced apoptosis
[193]. A mutation in the binding sites of JNK reduced p73-
mediated apoptosis. In addition, JNK has been involved
in cisplatin-induced cytotoxicity mediated by the latent
membrane protein-1 (LMP-1) of the Epstein-Barr virus
[190, 194] and phospholipase A2-activating protein (PLAA)
[195]. Furthermore, inhibition of TWIST [196], Snail [197],
cytokeratin-8 [198], and the RNA-dependent protein kinase
(PKR) [199] has been reported to induce JNK activation
leading to cisplatin-mediated cytotoxicity. Studies have also
implicated activation of JNK pathway following recognition
of cisplatin-induced DNA damage by the MMR [121, 200].
JNK and c-Abl were proposed to be signal transducers

involved in MMR system that recognizes the cisplatin-DNA
adducts and induce cell death [121]. In addition to its role
in regulating anticancer activity of cisplatin, JNK pathway
has also been implicated in the nephrotoxicity induced by
cisplatin. Inhibition of the JNK pathway was cytoprotective
restricting renal cell death and inflammation [201]. Recently,
the JNK pathway was also shown to mediate cisplatin-
induced nephrotoxicity driven by the Toll-like receptor,
TLR4 [202].

7.4. Cisplatin and p38 MAPK. The p38 MAPK family is acti-
vated by environmental stress and inflammatory cytokines
and is an important mediator of cisplatin-induced apoptosis.
The activation of this pathway by cisplatin has been seen
in different experimental model systems, resulting in a
cisplatin-sensitive phenotype [203]. Inhibition of p38 MAPK
rendered cells resistant to cisplatin and restimulation of the
p38 MAPK along with JNK sensitized cisplatin resistant
ovarian cancer 2008/C13∗ cells by increasing the expression
of FasL [204]. Akt2 has been shown to negatively regulate
the p38 MAPK pathway by binding to and phosphorylating
one of the p38 family members ASK1, resulting in the
inhibition of this pathway and rendering the cells resistant
to cisplatin [205]. The p38 MAPK pathway was shown
to be activated in response to agents such as curcumin
which induced apoptosis in cisplatin-resistant ovarian cancer
cells [206]. Thus, the activation of p38 MAPK regardless
of the upstream signaling pathway seems to be important
in mediating cisplatin-induced cytotoxicity. Winograd-Katz
and Levitzki identified EGFR as a substrate for p38 MAPK
and cisplatin-induced receptor internalization was triggered
by p38-mediated phosphorylation of the receptor [207]. p38
MAPK has been shown to mediate its effect via p18(Hamlet),
a p38 MAPK-regulated protein, which interacts with p53 and
stimulates the transcription of proapoptotic genes PUMA
and NOXA to induce apoptosis [208]. Like JNK, p38 MAPK
has also been implicated in contributing to nephrotoxic-
ity possibly via TNFα [209, 210]. Thus, the p38 MAPK
pathway plays a critical role in regulating cisplatin-induced
apoptosis.

7.5. Cisplatin and Akt. Akt belongs to a family of ser-
ine/threonine kinases which act downstream of phospho-
inositide 3-kinase (PI3K) and plays a critical role in cell
survival [211]. Several studies have established the involve-
ment of Akt in contributing to the acquired resistance to
cisplatin in several cancers, including ovarian [174, 212],
uterine [213], small-cell lung cancer [214], nonsmall-cell
lung cancer [215] and hepatoblastoma [216]. Hayakawa et
al. first demonstrated that cisplatin-induced DNA damage
caused phosphorylation of BAD at Ser136 via Akt and
inhibition of Akt sensitized ovarian cancer cells to cisplatin
[174]. Asselin et al. provided evidence that the X-linked
inhibitor of apoptosis (XIAP) inhibits cisplatin-mediated cell
death in cisplatin-sensitive A2780 ovarian cancer cells via
phosphorylation and activation of Akt [217]. On the other
hand, Dan et al. demonstrated that XIAP is a substrate for
Akt and phosphorylation of XIAP by Akt prevents its ubiqui-
tination and degradation in response to cisplatin, suggesting
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Figure 1: Cellular responses to cisplatin-induced DNA damage. [1] Entry of cisplatin into cells by passive diffusion (indicated by dotted
arrows), carrier-mediated transport, employing copper transporter-1 (CTR1). [2] Efflux of cisplatin from the cells by the ATP-dependent
transporters, ATP7A and ATP7B. [3] Cisplatin binds to cellular thiols, such as glutathione and metallothionein. The glutathione-cisplatin
conjugates are further transported from the cells by the ATP-dependent, GS-X pumps. [4] Once cisplatin interacts with DNA, it stalls cell
proliferation by inhibiting DNA synthesis, followed by activation of DNA damage response. [5] Cisplatin-DNA adducts is primarily repaired
via the nucleotide excision repair (NER) system and also induces cell-cycle arrest. The DNA damage response is transduced mainly via p53
and c-Abl. Cisplatin-induced DNA damage activates p53, leading to the induction of p21, GADD45, proapoptotic PUMAα, caspase-6, -7,
and microRNAs such as miR-34a. p53 also promotes cisplatin-induced apoptosis by binding and inhibiting the antiapoptotic Bcl-xL and also
by degradation of FLIP. Cisplatin-DNA adducts activates the mismatch repair system which further activates c-Abl, leading to the activation
of JNK and p38 MAPK and stabilization of p73 resulting in apoptosis. [6] Kinases such as PKC, ERK, and Akt are also involved in the
regulation of cisplatin-induced cell death. [7] miR-214 promotes cisplatin resistance by downregulating PTEN and activating Akt.

that XIAP promotes cell survival acting downstream of
Akt [218]. In small-cell lung cancer cells, the antiapoptotic
protein survivin appears to mediate the effect of Akt in
protecting against cisplatin-induced cell death [214].

PI3K/Akt inhibitor not only sensitized ovarian cancer
cells to cisplatin in vitro but also enhanced the antitu-
mor activity of cisplatin in nude mice implanted with
Caov-3 human ovarian cancer xenograft [212]. Cisplatin
increased p53 and decreased XIAP in cisplatin-sensitive
ovarian cancer 2008 cells but not in cisplatin-resistant
variant 2008/C13∗ cells unless Akt was inhibited. The status
of p53 also influenced the ability of Akt inhibitors to
potentiate cisplatin sensitivity. Ectopic expression of the
tumor suppressor PTEN which inhibits PI3K/Akt pathway
sensitized cisplatin-resistant ovarian cancer 2008/C13∗ cells

containing wild-type p53 but not in A2780/CP cells con-
taining mutant p53 [105]. It has been suggested that Akt
promotes chemoresistance by decreasing p53 phosphoryla-
tion and PUMA upregulation [219]. Heat shock protein,
HSP27 which is often overexpressed in cisplatin-resistant
cells enhanced cisplatin-induced Akt phosphorylation, sug-
gesting that HSP27 may contribute to chemoresistance via
the Akt pathway [220]. Among the Akt isoforms, Akt2
has been associated with chemoresistance of ovarian and
uterine cancers [205, 213, 221]. However, acquisition of
resistance by human lung cancer cells was associated with
Akt1 overexpression and gene amplification [222]. Abedini
et al. demonstrated that Akt confers cisplatin resistance via
inhibition of p53-dependent ubiquitination and degradation
of FLIP in response to cisplatin [223]. Claerhout et al. raised
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the possibility that autophagy plays an important role in
contributing to cisplatin resistance [224]. In a progressive
model of cutaneous squamous cell carcinoma cell lines,
inhibition of autophagy by 3-methyladenine or by ATG5
knockdown, along with inhibition of Akt enhanced the
cytotoxicity of cisplatin [224]. Recently, it has been reported
that several microRNAs are deregulated in ovarian cancer
and miR-214 promotes cell survival and cisplatin resistance
by downregulating PTEN and activating Akt [225]. Thus,
Akt/PTEN pathway plays an important role in cisplatin
resistance and could be intervened to reverse the resistant
phenotype.

8. Conclusion

Despite significant advancements in drug development and
molecular-targeted therapy, traditional chemotherapy con-
tinues to be the major treatment option. For more than
thirty years, cisplatin serves as one of the most important
anticancer drugs used clinically. However, cisplatin resistance
continues to be the major hurdle in cancer chemotherapy.
As depicted in Figure 1, cellular sensitivity to cisplatin is
not only regulated by its uptake, efflux or interaction with
its target DNA but cellular responses to cisplatin-induced
DNA damage also play a major role in deciding the ultimate
cell fate. Cells can activate protective responses to inhibit
cell cycle progression and repair cisplatin-induced DNA
damage. Although extensive DNA damage can induce cell
death by apoptosis, several signaling pathways, including
Akt, PKC, and MAPKs (e.g., ERK, JNK, and p38 MAPK) can
regulate cisplatin-induced apoptosis. The tumor suppressor
protein p53 play a critical role in regulating cell cycle
arrest, DNA repair and apoptosis. The nonreceptor tyrosine
kinase c-Abl can also participate in DNA damage response
by activating various MAPKs and interacting with p53
and p73. Recent evidence suggests that microRNAs can
also regulate cisplatin sensitivity. Since various signaling
pathways regulate cisplatin sensitivity, one way to improve
the efficacy of cisplatin is to use it in combination with
agents that target the signaling pathways and contribute
to cisplatin resistance. Additionally, combining cisplatin
with molecular-targeted therapy should lower the dosage
of cisplatin currently employed and thus help in alleviating
its side effects such as nephrotoxicity. As discussed in this
paper, the cellular context has significant impact in deciding
the ultimate response to cisplatin and may vary from one
patient to another. Thus, the major challenge is to develop
individualized therapy options that will be tailor-made to
benefit a particular patient. Given the uncertainty with the
success of any newly developed drug and the success of
cisplatin as a chemotherapeutic agent, this approach may be
more feasible and should be actively pursued.
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